Jump to content

Langley Celebrates Black History Month: Brittny McGraw


NASA

Recommended Posts

  • Publishers

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

brittny-mcgraw.jpg?w=2048
Brittny McGraw serves as News Chief in the Office of Communications at NASA’s Langley Research Center. She joined NASA Langley in September 2023, after a 20-year career as an award-winning broadcast journalist.
NASA/David C. Bowman

Brittny McGraw serves as News Chief in the Office of Communications at NASA’s Langley Research Center. She joined NASA Langley in September 2023, after a 20-year career as an award-winning broadcast journalist. Her broadcast career included stops in New Bern, N.C., Dayton, Ohio, Pittsburgh, Pa. and most recently Roanoke, Va. She graduated with a bachelor’s degree in Journalism and Mass Communication and a bachelor’s degree in Romance Languages from the University of North Carolina at Chapel Hill. Brittny is excited to find new and innovative ways to share NASA Langley’s story.      

Who or what inspired you to choose your career and why?   

I’ve enjoyed communicating stories and impact since I was a third-grade student doing the school announcements. My mom recognized my interests in writing and public speaking and suggested I consider attending the University of North Carolina at Chapel Hill to major in journalism. I took that suggestion to heart. As a high school senior, I only applied to UNC-CH, because I felt my calling to be a journalist was predestined! Shortly after graduation I started my first reporting job in New Bern, N.C. and began a career that allowed me to give a voice to the voiceless, hold the powerful accountable, and keep my community informed about issues that would impact them. I’m always grateful I had the opportunity to live out the dreams of third grade me. 

Along the way I realized my communications skills didn’t have to be limited to a newsroom. I saw the value of using my foundation as a journalist to uplift and amplify messaging for one organization. That’s how I found NASA Langley and I’m so glad I did! It has been wonderful helping people outside our gates understand how the work we’re doing is changing their lives and inspiring a better world.      

What do you find most rewarding about working with NASA?   

I love that NASA is a place where you can challenge yourself, learn, and grow in a supportive environment. I’m naturally curious and inquisitive and ask a *lot* of questions, and that’s encouraged here. It was a little scary stepping away from the news industry I was very familiar with and making the transition to an entirely new world of NASA. What I quickly realized is the basics of communications don’t change, no matter if you’re sharing breaking news or the latest achievement in aeronautics: you have to know how to share the impact of your work and why your audience should care. It has been great to develop my communications skills in new and different ways here at NASA Langley. 

What do you enjoy doing outside of work?   

I’m a fitness enthusiast so I love working out! Staying active takes me to my happy place. I run, do strength training, high-intensity interval training, and mobility and flexibility work. I’ve competed in fitness competitions, completed three half-marathons and one obstacle course race, and enjoy challenging myself physically and mentally. It’s the best feeling when you set a personal record on a power clean or a front squat, or you shave a few seconds off your one-mile run. I’m constantly amazed and proud of what my mind and body can do.  

I also enjoy traveling the world with my sister. Two of the most beautiful places we’ve visited are Tahiti and its sister island, Moorea. There are so many fascinating places to see and people to meet, and we’re trying to do that one trip at a time.   

What advice would you give to someone who might be interested in pursuing a career at NASA?   

NASA is for everyone! I’d love to shout that from the rooftops! It takes people with a variety of skills to keep NASA Langley moving forward. I never imagined I’d have a news-centered job at a place known for aeronautics, science, and space exploration! But here I am! NASA Langley is its own ecosystem that needs everyone from accountants to business analysts to educators to firefighters, in addition to scientists, researchers, and engineers to be successful.    

I think it’s key to think outside the box when pursuing career opportunities, because no matter if it’s NASA or another organization, there’s likely a way to use your unique talents and abilities to elevate their work.  

How does your background and heritage contribute to your perspective and approach in your role at NASA?   

I understand the importance of ensuring diverse voices have a seat at the table because there’s value in being able to see and understand the world through another person’s perspective. As a journalist, I knew there was never one side to a story, and in my role at NASA Langley I want to make sure we’re being inclusive with our communications products to highlight the depth and breadth of our work and our people. Studies consistently show that diversity in the workplace contributes to business growth, innovation, and creativity, which are key aspects of a thriving, healthy work environment. 

The 2024 theme for Black History Month is “African Americans and the Arts,” spanning the many impacts that Black Americans have had on visual arts, music, cultural movements and more. How have the arts played a role in your life?    

My parents encouraged my sister and me to be well-rounded and participate in a variety of extracurricular activities, so I was a dancer, pianist, and violinist growing up. They also exposed us to musicals, plays, symphonies, and operas from a young age, and through that I developed an appreciation for the arts that continues to this day. I also love to laugh and regularly attend stand-up comedy performances in the area. Laughter truly is the best medicine and can lift your spirits in an instant!  

  

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      This illustration shows a red, early-universe dwarf galaxy that hosts a rapidly feeding black hole at its center. Using data from NASA’s James Webb Space Telescope and Chandra X-ray Observatory, a team of astronomers have discovered this low-mass supermassive black hole at the center of a galaxy just 1.5 billion years after the Big Bang. It is pulling in matter at a phenomenal rate — over 40 times the theoretical limit. While short lived, this black hole’s “feast” could help astronomers explain how supermassive black holes grew so quickly in the early universe.NOIRLab/NSF/AURA/J. da Silva/M. Zamani A rapidly feeding black hole at the center of a dwarf galaxy in the early universe, shown in this artist’s concept, may hold important clues to the evolution of supermassive black holes in general.
      Using data from NASA’s James Webb Space Telescope and Chandra X-ray Observatory, a team of astronomers discovered this low-mass supermassive black hole just 1.5 billion years after the big bang. The black hole is pulling in matter at a phenomenal rate — over 40 times the theoretical limit. While short lived, this black hole’s “feast” could help astronomers explain how supermassive black holes grew so quickly in the early universe.
      Supermassive black holes exist at the center of most galaxies, and modern telescopes continue to observe them at surprisingly early times in the universe’s evolution. It’s difficult to understand how these black holes were able to grow so big so rapidly. But with the discovery of a low-mass supermassive black hole feasting on material at an extreme rate so soon after the birth of the universe, astronomers now have valuable new insights into the mechanisms of rapidly growing black holes in the early universe.
      The black hole, called LID-568, was hidden among thousands of objects in the Chandra X-ray Observatory’s COSMOS legacy survey, a catalog resulting from some 4.6 million Chandra observations. This population of galaxies is very bright in the X-ray light, but invisible in optical and previous near-infrared observations. By following up with Webb, astronomers could use the observatory’s unique infrared sensitivity to detect these faint counterpart emissions, which led to the discovery of the black hole.
      The speed and size of these outflows led the team to infer that a substantial fraction of the mass growth of LID-568 may have occurred in a single episode of rapid accretion.
      LID-568 appears to be feeding on matter at a rate 40 times its Eddington limit. This limit relates to the maximum amount of light that material surrounding a black hole can emit, as well as how fast it can absorb matter, such that its inward gravitational force and outward pressure generated from the heat of the compressed, infalling matter remain in balance.
      These results provide new insights into the formation of supermassive black holes from smaller black hole “seeds,” which current theories suggest arise either from the death of the universe’s first stars (light seeds) or the direct collapse of gas clouds (heavy seeds). Until now, these theories lacked observational confirmation.
      The new discovery suggests that “a significant portion of mass growth can occur during a single episode of rapid feeding, regardless of whether the black hole originated from a light or heavy seed,” said International Gemini Observatory/NSF NOIRLab astronomer Hyewon Suh, who led the research team.
      A paper describing these results (“A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST”) appears in the journal Nature Astronomy.
      About the Missions
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      News Media Contact
      Elizabeth Laundau
      NASA Headquarters
      Washington, DC
      202-923-0167
      elizabeth.r.landau@nasa.gov
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      4 min read
      NASA’s Swift Studies Gas-Churning Monster Black Holes
      A pair of monster black holes swirl in a cloud of gas in this artist’s concept of AT 2021hdr, a recurring outburst studied by NASA’s Neil Gehrels Swift Observatory and the Zwicky Transient Facility at Palomar Observatory in California. NASA/Aurore Simonnet (Sonoma State University) Scientists using observations from NASA’s Neil Gehrels Swift Observatory have discovered, for the first time, the signal from a pair of monster black holes disrupting a cloud of gas in the center of a galaxy.
      “It’s a very weird event, called AT 2021hdr, that keeps recurring every few months,” said Lorena Hernández-García, an astrophysicist at the Millennium Institute of Astrophysics, the Millennium Nucleus on Transversal Research and Technology to Explore Supermassive Black Holes, and University of Valparaíso in Chile. “We think that a gas cloud engulfed the black holes. As they orbit each other, the black holes interact with the cloud, perturbing and consuming its gas. This produces an oscillating pattern in the light from the system.”  
      A paper about AT 2021hdr, led by Hernández-García, was published Nov. 13 in the journal Astronomy and Astrophysics.
      The dual black holes are in the center of a galaxy called 2MASX J21240027+3409114, located 1 billion light-years away in the northern constellation Cygnus. The pair are about 16 billion miles (26 billion kilometers) apart, close enough that light only takes a day to travel between them. Together they contain 40 million times the Sun’s mass.
      Scientists estimate the black holes complete an orbit every 130 days and will collide and merge in approximately 70,000 years.
      AT 2021hdr was first spotted in March 2021 by the Caltech-led ZTF (Zwicky Transient Facility) at the Palomar Observatory in California. It was flagged as a potentially interesting source by ALeRCE (Automatic Learning for the Rapid Classification of Events). This multidisciplinary team combines artificial intelligence tools with human expertise to report events in the night sky to the astronomical community using the mountains of data collected by survey programs like ZTF.
      “Although this flare was originally thought to be a supernova, outbursts in 2022 made us think of other explanations,” said co-author Alejandra Muñoz-Arancibia, an ALeRCE team member and astrophysicist at the Millennium Institute of Astrophysics and the Center for Mathematical Modeling at the University of Chile. “Each subsequent event has helped us refine our model of what’s going on in the system.”
      Since the first flare, ZTF has detected outbursts from AT 2021hdr every 60 to 90 days.    
      Hernández-García and her team have been observing the source with Swift since November 2022. Swift helped them determine that the binary produces oscillations in ultraviolet and X-ray light on the same time scales as ZTF sees them in the visible range.
      The researchers conducted a Goldilocks-type elimination of different models to explain what they saw in the data.
      Initially, they thought the signal could be the byproduct of normal activity in the galactic center. Then they considered whether a tidal disruption event — the destruction of a star that wandered too close to one of the black holes — could be the cause.
      Finally, they settled on another possibility, the tidal disruption of a gas cloud, one that was bigger than the binary itself. When the cloud encountered the black holes, gravity ripped it apart, forming filaments around the pair, and friction started to heat it. The gas got particularly dense and hot close to the black holes. As the binary orbits, the complex interplay of forces ejects some of the gas from the system on each rotation. These interactions produce the fluctuating light Swift and ZTF observe.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Watch as a gas cloud encounters two supermassive black holes in this simulation. The complex interplay of gravitational and frictional forces causes the cloud to condense and heat. Some of the gas is ejected from the system with each orbit of the black holes. F. Goicovic et al. 2016 Hernández-García and her team plan to continue observations of AT 2021hdr to better understand the system and improve their models. They’re also interested in studying its home galaxy, which is currently merging with another one nearby — an event first reported in their paper.
      “As Swift approaches its 20th anniversary, it’s incredible to see all the new science it’s still helping the community accomplish,” said S. Bradley Cenko, Swift’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “There’s still so much it has left to teach us about our ever-changing cosmos.”
      NASA’s missions are part of a growing, worldwide network watching for changes in the sky to solve mysteries of how the universe works.
      Goddard manages the Swift mission in collaboration with Penn State, the Los Alamos National Laboratory in New Mexico, and Northrop Grumman Space Systems in Dulles, Virginia. Other partners include the University of Leicester and Mullard Space Science Laboratory in the United Kingdom, Brera Observatory in Italy, and the Italian Space Agency.

      Download high-resolution images and videos.

      By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share








      Details
      Last Updated Nov 13, 2024 Editor Jeanette Kazmierczak Related Terms
      Astrophysics Black Holes Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center Neil Gehrels Swift Observatory Science & Research Supermassive Black Holes The Universe View the full article
    • By NASA
      1 Min Read Oral History with R. Walter Cunningham
      Lunar module pilot Walter Cunningham writes with a space pen as he performs flight tasks on the ninth day of the Apollo 7 mission. Credits: NASA Selected for NASA’s third astronaut class in 1963, Cunningham served as the backup Lunar Module Pilot for Apollo 1. He piloted the 11-day flight of Apollo 7 in October 1968, the first manned flight test of the Apollo spacecraft. The crew executed maneuvers enabling them to practice for upcoming Apollo lunar orbit rendezvous missions and provided the first live television transmission of onboard crew activities. Cunningham served as the Chief of the Skylab branch under the Flight Crew Directorate at Johnson Space Center in 1969 until his retirement and move to the private sector in 1971.
      Read more about R. Walter Cunningham
      NASA Oral History, May 24, 1999 NASA Biography Apollo Astronaut Walter Cunningham Dies at 90 The transcripts available on this site are created from audio-recorded oral history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the oral history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members.
      View the full article
    • By NASA
      1 Min Read Oral History with Karol J. Bobko
      View of STS 51-D crew commander Karol Bobko training with the Arriflex 16mm camera. Credits: NASA A veteran of three space flights, Karol J. “Bo” Bobko was selected as an astronaut in 1969 and served as a crewmember on the Skylab Medical Experiments Altitude Test (SMEAT) 56-day ground simulation in preparation for the Skylab missions. He served in various positions supporting the Apollo-Soyuz Test Project and the first Approach and Landing Tests for the Space Shuttle before flying as the STS-6 pilot and as the mission commander on STS-51D and STS-51J.
      Read more about Karol J. “Bo” Bobko
      NASA Oral History, February 12, 2002 NASA Biography The transcripts available on this site are created from audio-recorded oral history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the oral history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members.
      View the full article
    • By European Space Agency
      Video: 00:09:09 On 12 November 2014, after a ten-year journey through the Solar System and over 500 million kilometres from home, Rosetta’s lander Philae made space exploration history by touching down on a comet for the first time. On the occasion of the tenth anniversary of this extraordinary feat, we celebrate by taking a look back over the mission's highlights.
      Rosetta was an ESA mission with contributions from its Member States and NASA. It studied Comet 67P/Churyumov-Gerasimenko for over two years, including delivering lander Philae to the comet’s surface. Philae was provided by a consortium led by DLR, MPS, CNES and ASI.
      read the article Philae’s extraordinary comet landing relived.
      View the full article
  • Check out these Videos

×
×
  • Create New...